-~

AD-A241 106
[KRIRAIRIL |
T e e e
Cortract N, N51338-29-C-60 r
| * WDHC
L N sEP2 s ismng] B
L R (e g i_:!]'
Transmission Characteristics of the
3COM ETHERLINK
IINETWORK
2]
O=
=
=
=
LE
mg Michas! Georgiopoulos
== Yousuf Cheng-Hung Ma
TR S Bt A Institute for Simulation and Training

Appr - 3 tor pushe nlxase;
Dictitution Cnated

919 24

12424 Rasearch Parkway, Sutte 200
Crlando FL 32826

University of Central Florida
Division of Sponsored Research

073

IST-CR-90-7

oy

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

R

T b a4t s

REPORT DOCU' 1ENTATION PAGE

Faemizon e
A <REAR

12 BEFLAT FICLF Y (LR35 (AT

UXCLASSIFIED

“a RERa T eb WANTWE

RONE o -

2a. SECUATY CLASS#LATI0N AUTHORITY

3 DSIABULINIAVARLILIY OF RZ708T

25, DEUASSFLATICUIDYSUGRADNG SCHZDWE

Approved for Public Release;
Distribution is unlizited

X/A
<, PERFORYING OFGANIATION PEPOAT NUASEAES)

IST-CR-90-7

3 MO IORNG CaGANTAT.O% AZPORT LLN3ER(S)

IST-CR-90-7

€0 OFFKE 5747500

€2, KA32E OF FERFORLIGG CIGANSZIATICY

(f apcheade)

73, BAMEZ OF MONITCRNG OACANZIATON

it —

Institute for Sizulation
: and Training -
- 6. ADDRESS (Gity, Staze. and 2iP.Coce)

! ! 12424 Research Parkway, Suite 300
rlando, FL 32826

Y

Project Manager for Training Devices '
75 ADDFESSi0%y. State, ardd 27 Coce)

12350 Research Parkway

Orlando, FL 32826

8y, GrFICE $YM30L $. PROCUREASINT iNSTRUWENT (IDENTIFICATION RUNMSER

{f azglicable)

| . pamea/TTO . 1%61339-89-C-0043
(2 FooREs (Gry. State, and ZiP Code) | 0. SOURCE OF FUNDING NUi"3ERS
. v PROJECT TASK WOSK Uity
1500 Wilson Blvd. Y x%?’ < KO. ACCESS0H A0

i
i | arlingeon, va 22209 7
‘ , JionE Secciry,Castaation) g

Transzission Characteristics of the 3COM ETHERLINK IT Network
12. PERSOMAL AUTHOR(S)

Georgiopoulos. Michael: Chen
1 132, TYPE OF REPORT 135, TI4E COVERZD

! TECHNICAL FROVI__4/8Q TO__4/90
. }i6. suppLesaENTARY KOTATION —

~Hung Ma, Yousuf
34, DATZ OF REPORT (Year,Mcnth,Day) |15. PAQE CounT

- . April 1, 1990

17. COSATY CODES 18, SUBZECT TERMS (Continue on reverse if necessary and identify by block number)

N FIELD GROU? SUB-GROUP

n ETHERNET, SIMNET, Protocol Enhancenents

19. ASSTRACT (Continue on reverse if necessary and identify by block riumber)

In this report, the transmission characteristics of the 3Com Etherlink 1I adapter
are examined. In particular, the transmission speed of the adapter is investigated
with data passed and without .data passed from host memory to the adapter buffer.
Furthermore, experiments are conducted to examine the capability of replacing an
old packet, subnmitted to tie ndapccr buffer, with a new packet from the host
memory, as well as the capability of stopping the transmission of a packet already
submitted to the network adapter. The primary motivation of this investigation

is to understand the behavior of the 3Com ETHERLINK II adapter in a simulation
networking environment- under real time constraints.

2 STRIBUTION/AVAIABILITY OF ABSTRACT

INCLASSIFIEOUNUMITED] SAME AS RPT) OTIC USERS O{AICLAY?If TD
222, NAME OF RESPONSIBLE INDIVIDUAL 22b_TELEPHONE (include Arsa Code) | 225 OFFICE SYMBOL
/?7 ke Garps ffy Y07 350 4L | ANE2M-TND-EN.

DD Form 1473, JUN 86) Preyiousgditiond are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

21 ABSTRACT SECURITY CLASSIFICAION

¥ Y ., . .
PER. ooy, oo, e ., o e e -, e

Transmission Characteristics of the
3Com ETHERLINK II NETWORK ADAPTER

Michael Georgiopoulos Yousuf Cheng-Hung Ma

Dept. of Electrical Dept. of Computer

Engineering Engineering

Abstract :

In this report, the transmission characteristics of the 3Com Etherlink
Il adapter are examined. In particular, the transmission speed of the
adapter is investigated with data passed and without data passed
from host memory to the adapter buffer. Furthermore, experiments
are conducted to examine the capability of replacing an old packet,
submitted ‘to the adapter buffer, with a new packet from the host
memory, as well as the capability of stopping the transmission of 2
packet already submitted to the network adapter. The primary
motivation of this investigation is to understand the behavior of the
3Com ETHERLINK U adapter in a simulation networking enviornment
under real time constraints.

S
22 3
A4 \
Y ¢o‘°¢9“_)
/ _Azyession For

HCIA 7% § =3
B2 B 73 o
J UGy wn 0d 0

3 JuLlilicat e
T ———
; Sy .

4 -
s Dratrtutieny
s -

1 Aotilaelitty Coden
t Ava'l saqfee”

‘DL,L ’ Semrt L
! .
59\—\ 9%

M

[E—

i. INTRODUCTION-MOTIVATION

The subject of thi-s report is to understand the 3Com ETHERLINK II
adapter data transmission characteristics. The 3Com Etherlink If adapter is a
high performance network interface that links an IBM PC, XT, AT, PS/2 Model
25 or 30, or compatible personal computer to IEEE'802.3 Ethernet networks. The

experiments conducted dez! with the following items.

Experiments

1. Transmission speed of the adapter with data (packet) pass from remote memory
(host memory) to local memoary (adapter buffer). The program TSTRX1.ASM was
used to achieve this goal.

2. Transmission speed of ‘the adapter without data (packet) pass from remote
memory to local memory. To complete this task the program TSTRX2.ASM was
used.

3. The possibilty of stopping the transmission of a packet (data), already submitted

to the adapter. To perform this task the program TSTRX4.ASM was utilized.

4. The possibility of replacing an old packet (data), already submitted to the
adapter buffer, with a1.ew packet (data) from the host memory. Programs TSTRX6
and TSTRX7.ASM are used to achieve this goal.

The equipment used to conduct experiments 1-4 are i) two HP Vectra RS/20C
computers and ii) an HP 4972A LAN protocol analyzer. The motivation for ex-
periments 1 and 2 is to examine the maximum transmission spegd capabilities of
a single network node (in this case the HP Vectra RS/ZdC). This information will
be useful when the time comes to overload a network of HPs in order to evalu-

ate, experimentally, the performance of the Ethernet protocol. The rationale of

1

W et ——— —— et 6

experiments 3 and 4 is that, in certain rezl-time applications, we want to have the
flexibility to replace old data with new data or stop a packet’s transmission before
it is completed. This capability is beneficiel in voice applications, where a new voice
packet (new data) replaces an unsuccessfully transmitted cld packet (old data), or
in SIMNET applications where 2 new state update message (new data) replaces an

unsuccessfully transmitted old state update message (old data).

2. EXPERIMENTS 1 and 2

Experiment 1 examines the transmission speed characteristics of the adapter
when data is passed from the host memory to the adapter buffer. Data is passed
from the host memory on to the adapter buffer using DMA. The test environment is
set up to avoid uneccessary time delays due to program instructions, data generation
time and busy network channel conditions. In particular, the following constraints

were imposed.

a. The data passed is a packet of fixed length.

b. The data generation time is zero.

c. The network channel is collision free (i.e., only one computer was allowed to send
data).

d. The program was shortened to eliminate uneccessary instructions.

The above conditions, a-d, allow us to measure more accurately the true trans-
mission speed of the adapter. Each time a packet is transmitted to the adapter a
transmission command is issued .and the program gets into a waiting mode until
this packet is successfully transmitted. Three different packet lengths were tested

and statistical results from the HP LAN analyzer are reported in Tables 1-3. In

the £rst three columns of Tables 1-3 the peak or average traffic generated by the
HP computer (with data pass from host memory to adapter buffer) is shown for
eight different experiment runs. The next two cclumes give us the total number of

packets (frames) and the total number of bytes generated by the HP for the eight

——

different runs. Finally, in the last column the average interarrival time between two

. ! consecutive packet transmissions by the HP is depicted.
Peak or Peak or Peak or Total Total Packet elapsed
Average ¥ Ave. kbits/s Ave. fxms/s Frames Bytes Time (usec.)
l 1 18.40 1,826 2,536 25,335 2.280E+6 420
H 2 18.40 1,826 2,536 25,341 2.281E+6 380
3 18.40 1,826 2,536 25,329 2.280E+6 390
4 18.40 1,826 2,536 25,33¢ 2.280E+6 380
' 5 '18.40 1,826 2,536 25,348 2.281E+6 420
6 18.40 1,826 -~ 2,536 25,351 2.2822+6 380
‘ 7 18.40 1,826 2,536 25,347 2.281e+6 380
8 18.40Q 1,826 2,536 25,355 2.282E+€ 380
Ave. 18.40 1,826 2,536 25,342 2.281E+6 392.5

Table 1 Packet length 78 bytes

Peak or Peak or Peak or Total Total Packet elapsed
Average % Ave. kbits/s Ave. frms/s Frames Bytes Time (usec.)

1 21.31 2,114 1,716 17,140 2.640E+6 570

. 2 21.31 2,114 1,716 17,156 2.642E+6 570

3 21.31 2,114 1,716 17,154 2.642E+6 570

4 21.31 2,114 1,716 17,157 2.642E+6 580

5, 21.31 2,114 1,716 17,156 2.642E+6 580

6 21.31 2,114 1,716 17,148 2.641E+6 570

7 21.31 2,114 1,716 17,157 2.642E+6 580

8 21.31 2,114 1,716 . 17,146 2.640E+6 570

Ave. 21.31 2,114 1,716 17,152 2.641E+6 573.75

Table 2 Packet length 142 bytes

}
Peak or Peak or Peak or Total Total Packet elapsec
Average © Ave. kbits/s Ave. frms/s Frames Bytes Time (usec.)
1 237 2,358 1,045 10,443 2.945846 960
: 2 23.77 2,358 1,045 10,447 2.9468+6 960
3 23.77 2,358 1,045 10,453, 2.948E46 960
I 4 23.77 2,358 1,035 10,452 2.9472+6 260
S 23.77 2,358 1,045 10,444 2.945e46 930
3 23.77 2,358 1,045 10,448 2.946E46 960
7 23.77 2,358 1,045 10,447 2.946E+6 920
, 2 23.77 2,358 1,045 10,447 2.945E+6 920
Ave. 23.77 2,358 1,045 10,448 2.946E+6 946.25
I Table 3 Packet length 270 bytes
Experiment 2 is similar with experiment 1 except that at at each transmission
time there is no data (packet) pass from the host memory to the adapter buffer;
' instead the packet (data) resides in the adapter buffer and a transmission command
I is issued to the adapter. For experiment 2, as in experiment 1, we wait until the
packet is successfully transmitted before a new transmission command is generated.
l The readings from the network analyzer are reported in Tables 4-6 for various packet
lenght sizes. A comparison between Tables 1-3 and 4-6 shows the obvious fact that
the transmission speed of the adapter with no data pass from host memory to the
adapter is approximately twice its transmission speed when data pass from host
’ memory to network adapter is involved.
Peak or Peak or Peak or Total Total Packet elapsed
I Average % Ave. kbits/s Ave. frms/s Frames Bytes Time (usec.)
1 35.86 3,558 4,842 49,426 4.448E+6 220
2 35.86 3,558 4,942 49,432 4.449E+6 200
3 35.87 3,559 4,943 49,421 4.448E+6 150
4 35.87 3,559 4,943 49,417 4.448E+6 220
5 35.87 3,559 4,943 49,418 4.448E+6 190
6 35.86 3,559 4,942 49,404 4.446E46 200
K 35.87 3,559 4,943 49,396 4.446E+6 190
8 35.87 3,559 4,942 49,410 4.447E+6 190
Ave. 35.87 3,559 4,943 49,417 4.448E+6 20C
Table 4 Packet length 78 bytes
4

Peak or Peak or Peak or Total Total Packet elapsed

Average 3 Ave. kbits/s Ave. frms/s Frames 3ytes 1me (usec.)
1 48.82 4,844 3,932 39,302 6.053E+6 260
2 48.82 4,844 3,932 39,295 6.051E+5 250
3 48.81 4,843 3,931 39,230 6.051£+6 260
] 48.81 4,843 3,931 39,301 6.,052E+6 260
5 48.81 4,843 3,931 39,306 6.0532+6 250
6 48.81 4,843 3,931 39,294 6.051E+6 260
7 48.81 4,843 3,931 39,287 6.050E+6 250
e 48.81 4,843 3,931 39,303 6.053e+6 250
Ave. 48.81 4,843 3,931 39,298 6.052E+6 255
Table 5 Packet length 142 bytes ~
Peak or Peak ox Peak ox Total Total Packet elapsed
Average % Ave. kbits/s Aave. frms/s Frames Bytes Time (usec.)
1 63.98 6,348 2,814 28,122 7.930E+6 380
2 63.98 6,348 2,814 28,135 7.934+6 350
3 63.98 6,348 2,814 28,110 7.9272+6 350
4 63.98 6,349 2,814 28,114 7.928E+6 350
5 63.98 6,348 2,814 28,135 7.934E+6 350
6 63.98 6,348 2,814 28,126 7.932E+6 . 350
7 63.98 6,348 2,814 28,134 7.934E+6 350
8 63.98 6,349 2,814 28,126 7.932E+6 360
Ave. 63.98 6,348 2,814 28,125 7.931E+6 355

Table 6 Packet length 270 bytes

3. EXPERIMENTS 3 and 4

This experiment has been carefully prepared to monitor every packet transmit-
ted. Two numbers are marked on each packet. Each number is a byte on the
packet data space. The first number is the 14th byte and the second number is the
16th byte. The first number corresponds to the identity of the packet that requests
transmission via the adapter on to the network. A packet with identity z will be
called packet z. The difference between the second number and the first number

corresponds to the number of packets that have been submitted to the adapter for

transmission, whose transmission process has been interrupted by a stop command.

e e

This experiment is performed in a séries of steps:

Step 1. If packet n (n > 1) is generated by the HP computer, check the bits COL,
ABT, OWC or PTX of the NICSR«egisf:er. (The meaning of these bits is provided
in Appendix A). ’

Step 2. If any of the bits COL,ABT,0WC is set (=1) or the bit PTX is reset (=0),
it means that the previous packet (i.e., packet n — 1) submitted to the adapter has
not been successfully transmitted yet. ’fhen, issue a stop command and wait until
it becomes effective.

Step 3. When the stop command for packet n — 1 becomes effective submit packet
n to the adapter and issue a transmit command.

A packet that is submitted to the adapter for transmission waits for two distinct
time periods before its transmission is considered complete. The first time period
is the interval [to, ;) and the second time period is the interval [ty,1,}, where the
parameters #o,?;,¢; have the following meaning:

1) to : The time of issuing a transmit command or beginning of the waiting for the
next retry. Any packet that suffers a collision returns to this point.

2) t) : The time at which packet transmission starts; this is the time at which the
adapter starts placing the first bit of the packet on the network cable.

3) t2 + The time at which packet transmission ends; this is the time at which the
adapter places the last bit of the packet on to the network cable.

An important question to answer when we try to stop the transmission of a
packet, that has already been submitted to the adapter, is when the stop command

becomes effective. It was our belief, from the very beginning, that if the stop

comir nd is issued in the time period [£y, %3] it becomes effective after t3; in other

T U323

DATA
15

3324

DATA
15

#325

DATA
15

words we believed that we could not stop the transmission of a packet whose bits
have already been placed by the adapter on to the network cable. On the contrary,
we thought that if the stop command was issued in the time period [to, ;] we could
stop the transmission of a packet already submitted to the network adapter. Due
to the above observations, we conducted two experiments.

In experiment 3a, a computer (HP) sent ten packets with random interarrival
time. All packets were received by the network analyzer. W;z observe, from exper-
iment 3a, that the second number (16th byte) of packet arrivals 323 and 324 are
the same. This means that packet 02 (i.e., packet arrival 324) came prior to the
successful-transmission of packet 01 (i.e., packet arrival 323) and we tried to stop
the transmission of packet 01. Since, we received packet 01 it seems that we were
unable to do so. But if we observe the time difference between the arrivals of packet
02 and 01 at the network analyzer (only 400 us) the reason might have been that
packet 02 ar.ivéd in the time period {t;,1,) of packet 01.

EXPERIMENT 3a

Elapsed 0:00:02.92126 Len 78 Filters O......... No erroxr
Destination 02-60-8C-01-02-03 Souxce 02-60-8C-0r-EA-88

00
00-00-00~00-04-05-06~04-08-09~0A-0B~00~00-01~00-01

Elapsed 0:00:02,92166 Len 78 Filtexs O......... No error
Destination 02-60-8C-01-02-03 Source 02-60-8C-0F-EA-88

00
00-00-00-00-04~05-06-04-08~09-0A~0B~00~-00~02~00~01

Elapsed 0:00:02,.92211 Len 78 Filters 0......... No exror
Destination 02-60-8C-01-02-03 Souxce 02~60-8C-0F-EA-88

00
00-00-00-00-04-05~06~04~08-09-0A-0B-00~00-03-00~02

b R WATE 2T

So, we performed another experiment to investigate the possibilty of stopping a
i;a,dwt’s transmission, provided that the stop command is issued during the [to, ;]
time period of the packet. In this experiment (experiment 3b) a computer (source
02-60-8C-0F-EA-88) produced 100 packets for transmission with random interar-
rival time between packets. Furthermore, another computer (source 02-CF-1F-30~
27-95) sent packets continuously with random interpacket time and random packet
lenghts. Let us take three packet arrivals 16,22 and 23 corresponding to consecutive
packets (packets 01, 02 and 03) emanating from the same computer (source 02-60~
8C-0F--EA-88). The second number (16th byte) for these packets is the same. This
implies that the packet 02 came prior-to the successful transmission of the packet
01 and we tried to stop the transmission of the packet 01; similarly, the packet
03 came prior to the successful fransmission of packet 02 and we tried to stop the
transmission of the packet 02. The difference in thé arrival time between packets
€3 and 02 is only 380 us while the difference bettween the arrival times of packets
02 and 01 is approximately 0.25s. As a result, it is highly likely that the packet 03
came during the {to, 1] interval of packet 02. According to the experimental results
we tried to stop the transmission of packet 02 and we were not successful. The stop
command was issued while packet 02 was in his [to, ;] waiting period. In conclusion,

from experiments 3a and 3b we deduce that we cannot stop the transmission of 2

packet that has already been submitted to the adapter for transmission.

148 b

XPEJIUENT 3D

#16 £lapsed 0:00:02.61:50 zen 78 Tilters Co........ %o erzoz
Destination 02-60-5C-01-02-03 vzce 02-60-8C~07-ZX-88

DATA 00

15 00-00~00-00-05-05-06-05-08-03-0A-02-00-00-02~-00-01

#17 Zlapsed 0:00:02.59450 Zen 202 Filters O......... ¥o eczroz
Destinaticn FF-Ff-FF-Fr-TF-fF Source 02-CF-if-39-27-55

€18 Elapsed 0:00:02.55515 Len 102 Filtezs O......... Xo error
Destination FF-FT-Ff-¥F-r¥-fFf Source 02-CF-17-30-27-83

1% ters Ovecvnan.. XNo ecsxzer

30-27-25

.. No errecr

£20
30-27-95
§21 £lapsed 0:00:02.70304 fen 302 filters O......... Xo error
.Destination FF-FE-Fr-Fr~FF-f7 Source 02-Cr-18-30-27-95
22 Elapsed 0:00:02.86253 ien 78 Tilters 0....... ¥o exrer
Destination 02-60-8C-01-02-03 3Scuzce 02-60-5C-0F-Z5-88
DATA . 00
15 00-00~00-00-05-05-06-045-08-05-0A-02-00-00-02-05-01

§23 Elapsed 0:00:02.86251 Len 78 Filtexs O...... ... No exzor
Destination 02-60-8C-01-02-03 Souzce 02-60-5C-0F-=3-88

A 00
5 00-00~00-00-04-05-06-05-08-09-05-03-00-00~03-00~-01

Experiment 4 is similar, in certein respects, with experiment 3. For example,
the 14th byte of a packet (first number) indicates the packet’s identity, while the
d.ixff;rence-betwem this number and the 16th byte (second number) indicates the
number of patkets whose transmission we attempted to stop. In experiment 4, we
do not try to stop a packet’s transmission under any circumstances. Hence, the
first and the second number (14th and 16th bytes) in this experiment are always
the same. In experiment 4, if the identity of the packet is an odd number we wait
until the transmission of the previous packet is complete and then, we submit the

packet to the adapter and we issue a transmit command; the only exception to this

9

T mm K28 et et o da

7 5y Sy et s

sele is packet OF for which we o not wait sizce it is the £t packet generated by
the compater. If the identity of 2 packet is 21 even number we do not wait vatil
the completion of the previous packet’s transmissicn, but we replace the old packet
%ith the even pumbered packet 2nd we issue 2 transmit commend. Our results 2ze

depicted below.
EXPERIMENT 4
£37 Slapsed 0:00:03.53539 Zen 78 Filters O......... No exror

Destipazicn 02-€0~8C-01-02-03 Souxce 02-£0-8C-97-£2~58

DATA a0
00-00-00-~00-04-05-06-05~-08-05-02-05-00-00-02~00-01
#33 Slapsed 0:00:03.43578 Len 156 Filters O......... Yo error
Destination 02-€0-8C-0:-02-03 Source 02-§0-8C-07-Z2-88
DATA oC-
15 00-50-00~00-05-05-06-04-08-09-0A~-03-00-60-05~00-04

100 07-05-05-0A-03-00-00-635-00-56-11-12-13-14-15-16-17

#35 Elapsed 0:00:03.43626 Zen 78 Filters 0......... ¥o errox
Destinaticn 02-50-8C-01~02-03 Scuzce 02-560-3C- F-EA-88
DATS [11]

00-00-00-00-04-05-06-05-08-05~0A-03-00-00-05-00-05

— oo e - We observe from the above results that we receive packets 01 and 04 and we S
miss packets 02 and 03. If the replacement action works and packet 02 came in time
to replace pa;ket 01 then, we should have received packet 02 and not packet 01. If
instead packet 02 did not come in time to replace packet 01, we should have received
both packets (i.e., 01 and 02). Hence, the results indicate that packet 02 came in
time to replace packet 01, but the replacement action did not work. Furthermore,

since the time difference between the arrival times of packet 04 and 01 is only 400

10

"r-*-”-- - R

PN

S mememe wmEme ® we e

e

o e ia Y i——

ps we 2o confdent that packet 02 asrived in the [fo, £3] time pesiod of packet 01.

4. CONCLUSIONS:

We cozducted some expesiments to compute the maximem transmission speed
of the 3Com ETHERLINK II adapter with data pass 2nd witkout data pass
from the kost'(Vecira HP/20C com;iutér) memosy. We found that the adapter
transmission speed is doubled if no data pass from host memory to adzpier buffer
is required. The complete results are shown in Tables 1-6.

e also investigeted the possibilty of stopping the transmission of a packet that
has already, beeen submitted to the network adapter (expesiment 3). Furthermore,
we examined the possibility of replacing an old packet, already submitted to the
2dapter for trensmission, with 2 new packet from the host memory (experiment
4). We found that, the 3Com ETHERLINK II adapter does not allow either the
stopping of the transmission of 2 packet or the replacement of a packet already

submitted to the network adapter.

APPENDIX A

Bit # tnemonic Description

0 PTX Indicates packet transmitted with no error.

2 coL Indicates that the transmission collided at
least once with another station on the
network. Lo

3 ABT Indicates the NIC akborted transmission
because of excessive collisions.

7 oviC Indicates that a collision occuxred after a

slot time (51.2 us).

11

: Tstrxi.asz - Th.S DIOGIam LizpLy send packets contincuenly on 3IC503 adapte:
- using 3L interface. Each packet tramsaission has packet data
' passed fron the host merory onto the adapter buffer.

oy

% NOTE: # 7To allow this pregram to end cleanly

added savvecs and fixvecs routines to preserve vectors that

i could possibly be changed.)

This allows 3L interrupt hooks to be undone so 3L can be used
in an executable pregran rather than just a permanent driver.

-

;
'
{

:define 3L functions

xtrn InitParapeters:near
extrn Init2dapters:near
extrn WhoAnIinear

xtrn ResetAdapter:near
xtrn RARxFilter:near
extrn WrRxFilter:near
~xtrn GetRxData:near
xtrn SetLookahead:near
extrn PutTxData:near

xtrn Set?Pime:near
.extrn TimeOut:near
extrn Ticks:word

i

lytrn Srand:near - .
extrn Rand:inear

]xtrn Waiting:near

ublic RxProcess

public ExitRevInt

. so these’ll be in map for debucging

public argstr, crlf, retsav, pkthd, wbf, smtpk, fnprmt

wblic xmitl, rcvsome, dowho, savvecs, fixvecs, dmprt, prx, wtoa

1£ equ oah
cr equ odh
Pinsec equ 60d
NUMXMIT equ 1004 ;total packets transmitted /Ma
[iiTIME equ 16d ;jurit in usec. /Ma
DRANGE equ 11d ;upper limit of random number /Ma
MODUNUM equ 10d ;modular number with count /Ma
TTIMELO equ 10d ;interframe time w/pass 64 data bytes /Ma
TIME20 egu 1d H n " " 128 " " /Ma
rTIME30 equ id H " " " 256 " " /Ma
dprint macro strloc :print string at strloc
| local strloc
push cx
lea dx,strloc
mov ah,0%h
int 21h
pop cx
endm
@kbdin macro ;get Kbd char in al
mov ah,8

A1 d

K.

ves

1

-
$me

..

“lheass

»khdchk macro :check for kbd char
mov ah,0bh
int 2ih sreturns al: O-nokey, ff-keyhit
endn .
pry macro len, dat ;print hex data in word dat, ien = 1 to 4
;:don’t put data in ax
zov ax,len)
push ax ~
oV ax,dat
push ax <
call or
add sp.,4
endn
“dpprt macro buf,adr,len ;hex dump a data area
=ov ax,len
push ax
™oV ay,adr
push ax
oV ax,buf
push ax
call” dnprt
add sp,6
endn -

ODE GROU? DATZ, RCODE, STACK
DATA SEGMENT WORD PUSLIC

.DOS driver init request header format
ini_hd struc

db 23 shdr len

db [1]

db 1] ;init cnd
stat dw 0

db 8 dup (0)

ab 0 ;num units (not used)
cdend dd 4] ;code end set here
1Irgo aw 0 ;arg offset
1irgs aw 0 ;arg segment

db [

ni_hd ends

;=--~ adapter parameter setup string

: this would come from ‘device=’ on real driver init’

wxgstr db "bs.sys /A:300 /D:l /I:3%,1f

;~=== fake driver init request header for InitParameter input

ih iri_hd <,,,,,,,0ffset CODE:argstr,seg CODE,>

vectsv dd 22h dup (0) :save all vectors so we can cleanup
:WhoAmI adapter info structure

ad_info struc .

ea db 6 dup(0) ;enet addr

rerl db 0 imajor ver

A-2

et men b

R TRy &

extp

éad
dd
dd
ad
¢b
éb
aw

2@ info ends

ImInar Meer
sattdy weex

sUyie Yer

;adapter tlype

;adeapter -status

sbuffer f1 s

snezber of xmit. buffers
;xnit buffer size
sxpit count

;xmit errs

;xmit tineouts

;xcv count

ibcast rcv count

ixcv errs

;retry count

:xfer node flags

;wait mode flags
;extension pointer

(~R-N-N-N-N-N-N-N-N-N-N- N NN

;progran nessages

crlf db cr,1f, 787
s IMmsg db ‘mtst3l load point: $*
ipmsg db sInitParameters returns: $%
Iamsg ¢b "Initadapters returns: $%
“JAmsg @b nwhoznl returns: $%
AfFnsg db YHrRxFilter returns: $"
Lansg db "SetLookahead returns: $¢
GEmsg db "GetRxData error return: S$%
iPnsqg db 1f,"Zero length packet®,cr,lf,’$”
eamsyg db "Press any key to continue",cr,lf,’$’
RSmsg db "Starting packet receive... any key to end",cr,if,’$’
REmsg ¢b "Stopping receive",cr,1f,’$’ .
SLmsg db gy
HFmsg db "o~ gn
TNmsg db “Select function, r for recv, t for xmit: v,’$’
tMpsg &b “Sending 1 packet®”,cr,lf,‘$’
XRmnsg db "putTxData returns: $"
fMreq db "Pransmision of packets has four options:",cr,lf
db " 0, Exit",cr,1f
db " 1, Transmit 78 byte packets without data pass.",cr,lf
db " 2, Transmit 142 byte packets without data pass.”,cr,lf
db " 3, Transmit 270 byte packets without data pass.",cr,lf
H db " 4. Transmit the longest packet without data pass.”,cr,lf
db cr,lf
) db "Enter your choise: ",’$/ Ma
© XMmsgl db "Sending 78 bytes packets for 10 seconds sampling w/D" 1Ma
db cr,lf,’$’ iMa
XMmsg2 db "Sending 142 bytes packets for 10 seconds sampling w/D" Ma
db cr,1f,’$* Ma
XMmsg3 db "Sending 270 bytes packets for 10 seconds sampling w/D" Ma
' db cr,lf,’$’ iMa
XMmsg4 db "Sending long packets for one minite without data pass® sMa
db cr,Lf,’$’ iMa
. #oOmsc db "WhoAmI DATA -",cr,lf,’$’
. A01msg db Y. enet addr : g
A-3

.
.

2

o af dyg,
H

No ! P H

Srimng adb " sub ver H

Nosvmeg ¢b " type ver HE e

woemsqg db s adapter type H-1

107nsg db " adapter status -1

i38msg ¢b " huffer flags : 5"

%09msg &b 5 nunber of xmit buffers : $¢

- "10msg ¢b " xmit buffer size : §" B .

i11xEsg. db " xmit count : §¢

vil2nsg db " ¥nit errs : §v

Wi3dmsg db " ¥nit timeouts :gn

l4msg db " rcv count -1

ANsSnsg d¢b " becast rcv count -1

Wiénsy db * xcv errs : s"

417nsg db " ret¥y count 2 s¢

J18msg db " xfer pmode flags : $v

#il9ksy ¢b " wait ndde flags : g X
v20nsg &b " extension pointer HI-L

; misc paranmeters
retsav 4w ?

s

segval dw %

toff aw ?

exrcd éb [»)

Xlock db 0

pklen dw 0 .
vkerr dw 4]

skent éw o]

pkcount dw [

savay aw ?

;receive buffer

wkthd db 32 dup(0) ;packet header portion for SetLookAhead
:pktdat db 1500 dup(0) ; remainder of pkt buffer /closed by Ma

:WhoAnI buffer
ibf ad_info <> ;WhoAmI buffer

;hhkkAkkrkkAkrx*k ready packet data Ak RERERRREEREH KA R TR AKXk

‘transmit 64 data byte packet
xmtpk label Dbyte

desta db 02h,60h,8ch,01h,02h,03h ;arbitrary dest addr
sorca db 00h,00h,00h,0£fh,0£fh,0£fh ;source addr - £ill from who ea
plen db 0,64 ;packet length
pdata dab 00h,00h,00h,00h,04h,05h,06h,07h

db - 08h, 09h,0ah,0bh,0ch,0dh,0eh,0£fh

adb 10h,11h,12h,13h,14h,15h,16h,17h

ab 18h,19h,1ah,1bh,1ch,1dh,1leh,1fh

db 20h,21h,22h,23h,24h,25h,26h,27h

db 28h, 29h,2ah, 2bh, 2ch,2dh, 2eh, 2fth

db 30h,31h,32h,33h,;34h,35h,36h,37h

db 38h, 39h, 3ah, 3bh,3ch,3dh, 3eh,3fh
£plen dw $-xmtpk ;packet len

kkkkkxArkhxxrrkx peady packet data *AxkkakkkrkrkahAkERchhN kK

A=l

o
rxse

serapsmit 1238 data byte paciet
mipk2 jabel hyte

desta2 db 92h,45h,8ch,01h,
sorcaz2 db ooh,00h,00h,0£h,
len2 db 0,128

02h,03h ;arbitrary dest addr
0fh,0fh :souxce addr - fill from who ea
;packet length

sdata2 db
db
db
“db
db
db
db
éb
db
db
éb
db
db
db
db
db

.tplen2 dw

0ok, 00h,00h,00h,04h,05h,06h,07h
08h,0%h,0ah,0bh,0ch,0dh,0eh,0£fh
10h,11h,12h,13h,14h,15h,16h,17h
18h,19h, 1ah,1bh,1ch,1dh,leh,1£fh
20h,21h,22h,23h,24h,25h,26h,27h
28h,29h,22h,2bh, 2¢ch,2dh, 2¢h,2fh
30h,31h,32h,33h,34h,35h,36h,37h
38h,39h,3ah,3bh, 3ch, 3dh,3eh,3fh
00h,01h,02h,03h,04h,05h,06h,07h
0sh,09h,0ah,0bh,0ch,0dh,0eh,0£fh
19h,11h,12h,13h,14h,15h,16h,17h
18h,19h,1ah,1bh,1ch,1dh,1leh,1fh
20h,21h,22h,23h,24h,25h,26h,27h
28h,29h, 2ah,2bh, 2ch, 2dh, 2eh,2fh
30h,31h,32h,33h,34h,35h,36h,37h
38h,3%h,32ah,3bh, 3ch,3dh,3eh,3fh

$~-xntpk2 ;packet len

Aaba *EkkkEkarcrkkArxRAAhkkhdhhrF

“kkkkkkkkxkkkkkk% yeady packet

:transmit 256 data byte packet
vmtpk3 label byte

-

lestald db 02h,60h,8ch,01h,02h,03h ;arbitrary dest zaar’
sorca3 db 00h,00h,00h,0£h,0£fh,0fh ;source addr - £ill from who ea
plen3 db, 0,255 ;packet length
datal db - 00h,00h,00h,00h,04h,05h,06h,07h
db 08h,09h,0ah,0bh,0ch,0dh,0eh,0fh
db 10h,11h,12h,13h,24h,15h,16h,17h
db 18h,1%h,1ah,1bh,1ch,1dh,1eh,1fh
db 20h,21h,22h,23h,240,25h,26h,27h
db 28h,29h,2ah,2bh, 2¢ch, 2d¢h, 2eh,2fh
db 30h,31h,32h,33h,34h,35h,36h,37h
db 38h,3%h, 3ah, 3bh, 3ch, 3dh,3¢h,3fh
db ooh,01h,02h,03h,04h,05h,06h,07h
db 08h,09h,0ah,0bh,0ch,0dh,0eh,0fh
db 1i0h,11h,12h,13h,24h,15h,16h,17h
db i8h,19h,1ah,1bh,1ch,1dh,1eh,1fh
db 20h,21h,22h,23h,24h,25h,26h,27h
db 28h,2%h, 2ah, 2bh, 2ch, 2dh,2eh,2fh
db 30h,31h,32h,33h,34h,35h,36h,370
db 38h,3%h, 3ah,3bh,3ch,3dh,3eh,3fh
db 00h,01h,02h,03h,04h,05h,06h,07h
db 08h,09h, 0ah,0bh,0ch,0dh,0eh,0fh
db 10h,11h,12h,13h,14h,15h,16h,17h
db 18h,19h,1ah,1bh,1ch,1dh,1eh,1fh
db 20h,21h,22h,23h,24h,25h,26h,27h
db 28h,29h, 2ah, 2bh, 2ch, 2dh, 2¢h, 2fh
db 30h,31h,32h,33h,34h,35h,36h,37h
db 38h, 3%h, 3ah, 3bh,3ch, 3dh,3eh,3fh
db 00h,01h,02h,03h,04h,05h,06h,07h
db 08h,09h,0ah,0bh,0ch,0dh,0eh,0fh
db 10h,11h,12h,23h,14h,15h,16h,17h
db 18h,19h,1ah,1bh,1ch,1dh,1eh,1fh

A-5

- . 1w v 5

vt

xplen3

;xmépkl
;destal
.;sorcal
;plenl

;pdatal

I s

:xplenl

hour
min

sec
cocunt
funcnun
sunrd

DATA
STACK
STACK

RCODE

[613)
3133
db
db

dw

label
db
db
dw
dw
dw

dw

db
db
¢b
dw
ab
dw

ENDS
SEGMENT
ENDS

SEGMENT
assunme

&
20h,21h, 228,230,230, -%h, 200, 0 h
28h, 27h, 2ah, obh 2eh, odh, 2eh L ot
Joh,3lh,gzh,zjh,Jan,}sh,Jéh,th
38h, 39h, 3ah, 3bh, 3ch, 3dh,3eh,3{h

S-xntpk3 ;packet len

;transmit largest packet, new data area/Ma

byte

02h,60h,8¢ch,01h,02h,03h ;arbitrary dest addr
ooh,o00h,00h,0£h,0fh,Cfh ;source addr - £ill from who ea
0,1500 spacket length

‘187 dup (Ooplh,0203h,0405h,0607h,0809h,0a0bh,0q0dh,0e0fh)
0££11h,0££13h

$=-xmtpkl ;packet len

OCO0OCOO0O0

STACK

WORD PUBLIC
cs:code, ds:code

main routine

£t =e s N

strxl

~e

proc

nov
nov
nov

nov

nov
mov
nov

@print
eprx

fprint
@prx

Oprint
@print
@kbdin

call

mnov

near

ax,CODE
ds,ax
es,ax

ax,cs
segval,ax

toff,of fset CODE:tst3l Ma
toff,offset CODE:tstrxl iMa

TVmsg ;print prog load addr

4,segval

CLmsqg

4,toff

crlf

PAmsSg ;wait for key
; ... get it

savvecs ;save a bunch of vectors for later

bx,0ffset CODE:ih ;fake driver init request buffer
46

H 12 2 2 R R R R e R R R R RS

¢all InitpParameters
H kb b kr bk r AR A I b &bk
mov retsav,ax
fprint IPmsq.
eprx 4,retsav
@print crlf
Rnov ax,retsav
or ax,ax
jz init_ok
nov al,1i
Jmp oout
init_ok:
mo¥s di,offset CODE:RxProcess
H EhEkrERkKkk kI AT Ak ddhkkk
call InitAdapters
H kkEkhEkhkAkkkkkhkhkkkkkhkkk
nov retsav,ax
8print iAmsg
8prx 4,retsav
@print crlf
mov ax,retsav
or ax,ax
jz ia_ok
mov errcq,2 -
jmp uninit -
ia_ok: ’
call dowho ;call WhoAmI and list result
; SetLookAhead is not reguired but added for reference
xor di,dl ;adapter 0
nov cx,32 ;Lookahead size
;3 hkkkkkkkdkhkkkkhkkkhkkhkk
call SetLookahead
. H *hkkkkhhkdhhkhhhhhhhhhrhd .

mov retsav,ax

' @print LAmsg

! prx 4,retsav

. @print crlf

. mov ax,retsav
or ax,ax
jz la_ok .

) mov erred, 4’

; np uninit -’

 la_ok:

. mov pkcount, 0

' xor dl,dl ;adapter 0

Lok mov ax,0ih ;set filter board address
mov ax,0ch :set .filter to promis/bcast

’

call

3 Fhkdkokdkhkdehkdhhhhkhhhh ki

WrRxFilter

3 dkdehkdkdkhkkkhkhkhhdkkhok

e
;
.
¥
13
.
i
)
.

rey toteav,
gprint Wknsg
@prx 1,retsav
9print crlf
nov ax,retsav
: or ax,ax
b jz wf_ok
: ROV errcd,5
jmp uninit
wf_ok:
:do xmit or rcv per user input
fnprnt:
@print FNmsg
ekbdin ;get input selection
! push ax
@print crlf
pop ax
cmp al,’x’
: je dorecv Ma
je jdorecv ;Ma
cmp al,’t’
je doxmt Ma
H jne fnprnt Ma
jmp fnpraot iMa
jdorecv: jrp dorecv Ma -
¥
Joxnt:
@print XMred iMa
gkbdin :Ma, get input selection
push ax iMa .
@print crif < :Ma
pop ax iMa
cnp al,’y’ iMa
je doxml sMa, transmit 64 byte packets with data pass
cnp al,’2’ Ma
: je jdoxm2 'Ma, transmit 128 byte packets with data pass
; cmp al, 3! Ma :
je jdoxm3 ;Ma, transmit 256 byte packets with data pass
cmp al, ‘4’ Ma
je jdoxmdg iMa, transmit long packets without data pass
cmp al,‘o’ iMa
) je juninit ;Ma, end of transmision
; jne doxnt Ma
mov errcd,al 1Ma
jmp uninit Ma
' jdoxm2: jmp doxm2 iMa
. jdoxm3: Imp doxm3 iMa
. jdoxmd: Jjmp doxmd 7Ma
juninit: jmp uninit :Ma
: transmit 64 data byte packet continuously with data pass for 10 seconds
! sampling.
doxml: @print XMmsgl Ma
A-8

loxml: @Oprint XMmogt

nov count, 0 ;Ma, clcar count
mov funcnun, 1 :Ma, run function number 1
nov cx, NUMXMIT
repXl:
push cx iMa
inc count sMa
nov ax,count ;Ma
nov byte ptr pdataf{0],ah ;Ma, mark packet number on high
nov byte ptr pdatafl},al Ma, .and low byte

JdoXmitl: call Xnitl

pop cx
loop repXi
call dowho

nov ax,sumrd
xor dx,dx

nov bx , NUMXMIT
div bx

nov bx,ax
@print RDImsg
@prx 4,bx

@print RDFmsg
€prx 4,dx
@print crilf

;Ma, transmit one "canned" packet

sMa, list WhoAmI result
;Ma

iMa

continuously without data pass for 20 seconds

Jjmp doxmt
; transmit 128 data b?te packet
; sampling.
doxm2: @print XMmsg2

mov count, 0

nov funcnum, 2

mnov cX ,NUMXMIT
repX2:

push cx

inc count

mov ax,count

mov byte ptr pdata2

mov byte ptr pdata2

JoXmit2: call Xnmitl

pop cx
loop repx2
call dowho
jnp doxnmt

iMa

;Ma, clear count
;¥a, run function number 2

Ma

Ma
[0),ak :Ma, mark packet number on high
(1),al Ma, and low byte

:Ma, transmit one "canned" packet

;Ma, list WhoAmI result
iMa

transmit 256 data byte packet
sampling

continuously without data pass for 10 second

oxm3: @print XMmsg3

.
.
H
.
’
.
.

a

nov count, 0

Ma .

iMa, clear count
A9

L o W wnre xe w

nev funcnun, sMa,

ran funclon pupboer !

nov N, HUMNMIT
SV EH
push (o34
inc count: ;Ma
mov ax,count ;Ma
mov byte ptr pdata3{0],ah ;Ma, mark packet number on high
nov byte ptr pdata3(1l},al iMa, and low byte
doxmif3: call Xmitl ;Ma, transmit one "canned" short packet
éop cx
loop repX3
call dowho ;Ma, list WhoAmI result
jmp doxmt Ma
; transmit "long canned" packet continuously without data pass for one minite
doxmd : @print XMmsg4 iMa
jmp doxmt iMa
call xmitl ;send a packet
nov errcd,al
3Jmp uninit
" dorecv:]
call rcvsome ;recieve packets for till key hit -
mov errcd,al
uninit:
H khkkhkhkkrkkkhkhkhkthkhkkhkkkdk
call Resetadapter
H hkkhh kb kAR h kA dkkk kK
call fixvecs
nov al,errcd
oout: nmov ah,4ch
int 21h
;tst3l endp iMa
tstrx2 endp iMa
xpitl proc near

H transm{t one "canned" packet
P @print XMmsg

;put our eaddr in xmit pkt

mov ax,word ptr wbf.ea
nov ‘word ptr sorca,ax
mov ax,word ptr wbf.ea+2
now word ptr sorca+2,ax
nov ax,word ptr wbf.ea+4
mov word ptr sorca+4,ax

1setup for PutTxData
cmp funcnum, 4d iMa

. A-10

e b e Po—— -

e

: je set i it

‘ Ccmp funcnum, 3d TMa
je sel) iMa
¢ crp funcnum, 2d iMa
! je set2 Ma .
{ cmp count, 1d. ;Ma H
i jnz notfl iMa §
! mov dx, 60h, ;req id and wait i
: Smp short setl iMa ,
10tfl: mov dx,64h, ;req id, wait and no data pass /Ma g
f seti: mov si,offset CODE:xmtpk ;xmt pkt buffer :
mov bx,xpléen ;set lengths :
mov cx,bx !
mp setnolx Ma ;
<
set2: :
cnp count, id 1Ma
jnz notf2i ;Ma
mov dx, 607 ;req’ id and wait
imp short; seto2 Ma
notf2: mov dx, 6'th ;req id, wait and no data pass /Ma
ieto2: mov si,cffset CODE:xmtpk2 ;xmt pkt buffer
nov bx,Xplen2 ;set lengths
nov cx,bx
np setnoTx iMa
set3:
cmp count,1d iMa
" dnz notf3 iMa
mov dx,s0h req id and wait
Jmp short seto3 iMa
1wtf3: ‘mov dx,64h sjreq id, wait and no data pass /Ma
seto3: mov si,offset CODE:xmtpk3 :;xmt pkt buffer .
mov bx,xplen3 ;set lengths '
nov cx,bx
*setq: mov ai,0ffffh ino TxProcess
! setnoTx: mov 4i,offffh ino TxProcess
’: ; khkkkkkdkkkhkhkkkkhkkhkki
‘ call PutTxbata
, H khkkkkkhkkhkkktkdkkhkhhkk
i nov retsav,ax
. @print HRmsg
H eprx 4,retsav
: @print crif .
H mov ax,retsav
ret
mitl endp
vcvsome proc near

; following code to dump received packets for a fixed time

@print RSmsg
shkpk: i
A-11

R o I IR

doXmitl: call

Pop
lcop
call
J=p

) - . A - - - m
RSP A e g am Y -
. - e o . ma
Ma, Tl TonRoonovo.maer]

.L&

o5 4

count

ax,count

byte ptr pdatafl],a=X
byte ptr pdata(i}l,al

, mark packe: nuxber on high
and low byte

SEEE

-

Xmitl :Ma, transnit one “canned” packet
cx
repXi
cowho ¥a , list WholAmI result
doxnt Ma

transnit 128 data byte packet comtinuously with dacta pass for 10 seconds

sanpling.

oxm2: @prinz

loXmit2: call

pop
loop
call
jmp

XMmsg2 Ha
count, 0 iHa , clear count
funcnun, 2 Ha, run function nuxber 2
C3x, HUMXMIT
>4 -
count N Ha
ax,count ‘Ha
byte ptr pdataz(f], ah ;Ma, mark packet number on high
byte ptr pdataz(i), al Ma and low byte
Xnitl iMa, transnit one "canned" packet
cx
repX2
dowho sBka, list WhoAmI result
doxnt Ma

. transmit 256-data byte packet continuously with data.pass for 20 second

; sampling

loxm3: @print

nmov

mov

mov
repX3:

push

inc
nov
mov
woVv

loXmit3: call

XMnsg3 Ha
count,0 iHa , clear count
funcnum, 3 ;Ma , run function number 3
Cx , NUMXMIT
cx
count Ma
ax,count Ma
byte ptr pdata3l(0), ah ;Ma, mark packet numker on high
byte.ptr pdata3ifl], al iMa, and low byte
Xmitl iMa, transmit one "canned" short packet

A~12

"

4

A ety S

vintunm for

o el dec

o~

Lﬁhy TepNs
czil Soeho s, list £hodxl result
jmp coxng ¥a
: Ttransmit ¥long camned® packet coantinucusly without data pass for one zinite
Sx=4: @print XMaegd Ma
j=o cdoxxnt ¥a
call xnicl ;send a packet
=ov errcé,zl
. I=p wninit
orecv: : i
-call ZCVSOT ;recieve packets for till key hitc
nov errcd,al
uninit: .
i thhkhkkEhFEhkE bkt EhkIk
call Resetiiapter
H EI L3222 2322222 222232453 -
call £ixvecs
zov a2l ,errcdé
~out: rov an,4ch
int 21ih
:tst31 endp Ma
stryl endd sHa
=itl proc near

transpit one "canned” packet
AQprint XMmsg

H

;put our eaddr in xmit pkt

oV ax,word ptr wbf.ea
nov word ptr sorca,ax
mov ax,word ptr wbf.ea+2
oV word ptr sorca+2,ax
mov ax,word ptr wbf.ea+4
mnov word ptr sorca+4,ax

;setup for PutTxData

cmp funcnunm, 4d sMa
. je set4 7Ha

cnp funcnun, 3d sMa

je set3 :Ma

cmp funcnun, 2d sMa

je set2 sMa

crp count, id ;Ma

) jnz notfl ;Ma
. nov dx,60h ireq
’ jmp short setl iMa
I otfl: mnov dx,64h ;req

id and wait |

id, wait and no data pass
A-13

/Ma

cxp count, 18 s¥a
jnz notf2 s¥a
&ov éx,60h sreg id and wait
j=p short seto2 sMa
notf2: rcov dx,64h ;rec id, wait and no data pass /Jia
seto2: mov si,offset CODE:xx=tpk2 ;xat pkt buffer
n=ov bz, xplen2 ;set lengths
=ov cx,bx
j=o setnoTy M2
set3:
c=p count,id ¥a
inz nctf3 Ma
zov éx,60h irec id and wait
3=z short seto3 Ma
10t£3: =ov éx,64h ;reqg id, wait and no data pass /la
seto3: rov si,offset CODE:xmtpk3 :xmt pkt buffer
=ov bx,xplen3 ;set lengths
inc bz ;Ma, nake length 256
zov cx,bx
*set4: =ov di,0ff£fh ;no TxProcess
setnoTx: mov di,0ffffh *;no TxPreccess

;7 Fhkkkkhkkkkkkkkihkkkhkkt
call PucTxData
; AEXKKKKKEKKKEEEKRAKEIKK
nov retsav,ax

@print XRmsg

;
H éprx 4,retsav
: éprint crif
nov ax,retsav
ret

(mitl endp

Jcvsone proc near

.

; following code to dump received packets for a fixed time
@print RSmsg

shkpk:
@kbdchk skey pressed?
or al,al
jz rdbfr
jmp wedone
rdbfr:
test pklock,0££fh ;got a pkt?
jnz 1stpkt
imp chkpk
lstpkt:

A-14

print

Yorx
gorint
nov pklock,0
inc pkent
j=p chkpk
iepk:
crp pklen,0
jnz pkok
éprint ZPmsg
ROV pklock,0
inc pkent
jrp chkpk
Jkok:
CcEp pklen, 256
jle dénokl
nov pklen, 256 ;1imit dump to 1st 256 bytes
dmokl:
@dmprt <offset CODE:pkthd>,0,pKklen
oV pklock,0
inc pkent
jup chkpk
sedone:
eprint REnmsg
nov ax,0 ;a return code

ret

ccvsone endp

RyProcess

RxProcess proc near
push b
pusn [4
test cs:pklock,0££h
jz getp
dontget:
inc pkcount
nov cx,0 ;zero length (just discard)
Jmp goget
. getp:
: ; At this point we couid check es:di packet header data
; to make some decision on packet disposition
i
¢ ; lock our buffer and get packet data into it
. nov cs:pklock,0£ffh ;lock buff
i mov cs:pKkerr,0
goget:
mov ax,CoDE
mnov es,ax
mov di,offset CODE:pkthd sbuffer
or dl,40h :release buffer

3 hkkkkkkkhkkkhkkhhhkhhkhx

A-15

I

B s et TP P

o

[SNT P4 SeLinlata

M L R R R R R A R R R R R R
B jerz nolen

nov cs:pkerr,ax

mov cs:pklen,cx

olén:

pop cx.

pop bx

ret

RxProcess endp

A n g dan

. ExitRevint
H - =
xitRevint proc near

§ iret

'xitRevint endp

’

~-~ get and print WhoAml statistics =—-=-

dowho proc near
push es
xor di,dl ;adapter 0

7 kkkkkkkkkkkdhkrkkhkhkkkkk

I

call WhoAnrI
H Akkkkkkkkhkkkhkhkkkkkkkkd

) nov retsav,ax
@print WAmsg
@prx 4,retsav
@print crlf
nov ax,retsav

[orx ax,ax

jz wa_ok
nmov errcd,3

: jmp uninit

1a_ok:

mov si,di
nov di,offset CODE:wbf
push ds

' push ds
push es
pop ds
pop es
mov cx,24
cld

rep movsw ;copy who buffer

pop ds.
pop es
call whodat ;print the WhoAmI data

A-16

v w kAt

whodat

~
~
~
e

wrtea:

print whoAmI data

PROC
@print

gdmprt

@print
”OV
nov

push
@prx
pop
inc
loop
@print

@print
@prx
@print

@print
gprx
@print

@print
€prx
@print

@print
@prx
@print

@print
eprx
@print

@print
@prx
@print

@print
@prx
@print

@print
@prx
@print

@print
Qprx

near
Woonmsg

swail tor Key

<offset CODE:wbf>,0,48

‘Wolnsg

cx,6
bx,0

bx
2,<word
bx

bx
prtea
crlf

Wo2msg
2 ,<word
crlf

wo3msy
2,<word
crlf

Woamsg
2 ,<word
crif

WoSnsg
2,<word
crlf

woemsg
2,<word
crlf

Wo7nsg
2,<word
crlf

Wo3nsg
2,<word
crif

Woomsg
2,<word
crif

Wwiomsg
4 ,<word

ptr

ptr

ptr

ptr

ptr

ptr

ptr

ptr

ptr

ptr

{bx+offset CODE:wbf.ea-1]>

whf.verli~-1>

-

wbf.ver2-1>

wbf.ver3~1>

wbhf.ver4-1i>

wbf.atyp-1>

wbf.astat-1>

wbf . bfrs-1>

wbf . nxb-1>

wbf.sxb>

A-17

[SE P §

gprint Wilnsg
8prx 4,-word ptr wbf.¥mtcs2>
Oprx 4,<word ptr wbf.xmtc>
@print crlf
@print Wil2rsg
eprx 4,<word ptr wbf.xmte+2>
eprx 4, <word ptr wbf.xmte>
I @print crif
I @print Wi3dmsg
@prx 4,<word ptr wbf.xmtto+2>
8prx 4,<word ptr wbf.xmtto>
H @print crlf
@print Wldnsg
éprx 4,<word ptr wbf.rcvc+2>
§ 8prx 4,<woxrd ptr wbf.rcvc>
i @print crilf
@print WlSmsg ‘
eprx 4,<word ptr wbf.rcvbo+2>
8prx 4,<word ptr wbf.rcvbe>
@8print crlf
@print Wiémsg .
éprx 4,<werd ptr wbf.rcve+2>
eprx 4,<word ptr wbf.rcve>
8print crif '
gprint Wl7msg
@prx 4,<word ptr wbf.rtc+2>
8prx 4,<woxd ptr wbf.rte>
, @print crilf
. @print Wismsg
. @prx 2,<word ptr wbf.xfmd-1>
; 8print cxlf
5
. @print Wilomsg
! @prx 2,<word ptr wbf.wtmd-1>
§ @print crlf
; @print W20nsg
@prx 4,<word ptr wbf.extp>
. @print crlf
| .
; ret
i shodat endp
‘ savvecﬁ proc near
push ds
push es
push si
push di
push cx
A-18

E B FOR e ’ - -

1 xS0 1,

oV e, an
¥or ax,
nov ds,ax
rov Ccx,22h*2 svectors 0 — 21h, 2 wds per
mov di,offset CODE:vectsv
xor si7si .
cld .
cli -
rep movsu ;save ‘en all
sti
pop cx
pop di
pop si
pop es
pop ds
ret

savvecs endp

i=-=
fixvecs proc near

push es
push si
push dai
push cx
. xor ax,ax
mov es,ax
mov cx,22h*2 ;vectors 0 ~ 21h, 2 wds per
mov si,ctfset CODE:vectsv
xor di,di
clad
cli . .
rep mOVsSwW ;restore ’‘em all
sti
pop cx
. pop di
> pop si
pop es
ret

+ fixvecs endp

dmprt - produces dump listing, calling parameters are pushed on stack
(converted from a ¢ routine)
INPUTS: .
[bp+4]) = data address
(bp+6] = starting address for line headers
[bp+8] = length of data, to print
OUTPUT:
pump listing to stdout device

L na me o %o we Mo Ny ne wp we

. dmprt proc near

’ push bp
mov bp,sp N
mov bx,bp
sub bx,0ch :local vars

A-19

FARRARY Laas e % . [Rpa.

2 R e T R, T B e

doosc:
T d0061:

a0063:

10066:
3006b:
10070:

ao073:

d00c5:

L3

mov
push

nov

sub
mov

div
mov

mnov

mov
nov

Jmp

push
mov
mov
int
mov
mev
int
mov
nov
int
mov
mov
int
pop

mov
push
mnov
add
push
call
add
push
mov
nov
int
mnov
mov
int
pop

» oV

test
jnz
push
mov

=p,
531

a¥, [Bpis]

ax,dx
cx,10h

cx
{bp-4]),ax

{bp-6],dx

len

;lines

;xen

word ptr [bp-8}1,0 ;i

word ptr [bp-0ah],0 :line

do1s8

ax
dl,cr
ah,2
21ih
dl,1f
ah,2
21h
dar,’ ¢
ah, 2
21h
dl’l ’
ah,2
21h
dx

ax,4

ax

ax, {bp¥6}
ax,{bp-8)
ax

prx

sp,4

ax

ar, ¢
ah,2

21h

dl’l ’

.ah, 2
21h

dx

70004

;000A

radr
33

;0004

word ptr [bp-Och},0 i

byte ptr {bp-0ch},3 H |

doods
dx
dl,’ ’

~ A-20

